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Nonconforming combinations are provided for solving interface problems of elliptic equa- 
tions. In these approaches, the Ritz-Galerkin method with particular solutions is used for the 
part of a solution domain where there are interface singular points; and the conventional finite 
element method is used for the rest of the solution domain. In addition, admissible functions 
chosen are constrained to be continuous only at the element nodes on the common boundary 
of the subdomains. Error bounds are derived in the Sobolev norms, and numerical 
experiments are given for solving a model interface problem of the equation, -Au + u = 0. 
Moreover, a significant coupling relation, L + 1 = 0( Iln hi ), is found for interface problems by 
using the nonconforming combinations, where (L+ 1) is the total number of particular 
solutions used in the RitzClalerkin method, and h is the maximal boundary length of 
triangular elements in the finite element method. c 1989 Academic Press, Inc. 

1. INTRODUCTION 

Efficient numerical methods for the solution of mathematical, and physical 
problems with singularities are significant because the conventional finite element 
method and finite difference method fail to deal with them. For angular singularity 
problems, there have appeared the conformal transformation methods of Whiteman 
and Papmichael [21], the infinite grid refinement method of Thatcher [20] and 
Gregory et al. [S], and the coupling method of the boundary and element methods 
of Zienkiewicz et al. [26]. But the most promising approaches are those that use 
the singular functions near singular points. In fact, Fix et al. [7] and Strang and 
Fix [19] provide an innovative method by adding the singular functions into 
piecewise interpolation polynomials in the standard finite element methods, but 
Wigley [23, 241 present an inverse approach by subtracting singular expansions 
from the solutions obtained by the finite element methods. Our question, however, 
is: should we use only the singular functions in the neighbourhood of the singular 
points? Certainly we should. In fact, the idea that uses only the singular functions 
in a subdomain can be easily performed in the nonconforming combined methods 
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[13-153 as long as the singular functions have been known, In the subdomains 
including angular singular points, only particular solutions (singular or analytic) 
are used; in other subdomains without singularities, the conventional finite element 
methods are still used as usual. Since a nonconforming strategy is employed for 
matching the Ritz-Galerkin method and the finite element method, the nonconfor- 
ming combination is referred to. In this paper the Ritz-Galerkin method is referred 
to if a subspace of particular solutions is used, and the finite element method if a 
subspace of piecewise linear functions is used. Besides the combined approaches, 
other treatments can be also found in Zielinski and Zienkiewicz [25], Li [ 151, and 
Li et al. [ 161 where piecewise singular and analytic functions are applied to whole 
solution domains, instead of the finite element method completely. In this paper, we 
will focus on interface problems only by the nonconforming combinations and will 
provide some new numerical techniques. For the interface problems of elliptic equa- 
tions, Kellogg [l&12] and BabuSka [l] provide a theoretical base for their 
singularity property (also see Birkhoff [4] and Strang and Fix [19]). The 
singularity at the corners of interfaces will reduce the precision of numerical solu- 
tions by the traditional finite element method or finite difference method. Hence, 
Han [9] presents the infinite element method which yields a satisfactory numerical 
solution for interface problems of the Laplace equation. But the method of Han 
cannot be applied to other elliptic equations, such as 

-du+24=0. (1.1) 

We now introduce the nonconforming combinations for Eq. ( 1.1) which consists 
of three steps as follows: 

1. Suppose that there exists only one singular point of interfaces. The solution 
domain is then divided into two subdomains. One of them includes the singular 
point, and it is called the singular subdomain. 

2. On the singular subdomain, the Ritz-Galerkin method is used with 
particular solutions of interface problems as admissible functions. On the other 
subdomain the finite element method is used with piecewise linear interpolation 
functions as admissible functions. We notice that when the intersection angles of the 
interfaces are 0 = n/n, n = 2, 3, . . . . some analytic eigenfunctions have to be added to 
Kellogg’s singular eigenfunctions, in order to form a complete set of eigenfunctions 
(Li [lS]). 

In addition, these admissible functions are constrained to be continuous only 
at the element nodes on the common boundary of two subdomains where two 
different methods (i.e., the Ritz-Galerkin method and the finite element method) 
are used simultaneously. This approach is nonconforming because the admissible 
functions are not continuous on the whole common boundary. 

3. Finally, a system of algebraic equations can be obtained. Since its 
coefficient matrix is positive definite and symmetric, the numerical solutions of the 
combinations are easily solved. 
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We shall provide error bounds of numerical solutions. Based on error analyses, 
a significant coupling relation such as that of Li [14]: 

L+l=O([lnhl). (1.2) 

is also proved for interface problems of (l.l), where (L + 1) is the total number of 
particular solutions in the singular domain, and h is the largest boundary length of 
triangular elements used in the finite element method. 

Numerical experiments using coupling relation (1.2) are carried out for a model 
problem of interfaces. In fact, only six terms of particular solutions are required for 
a good approximate solution. In summary, both theoretical analyses and numerical 
results in this paper will again show outstanding advantages of the nonconforming 
methods in solving interface problems provided that the asymptotic expansions of 
true solutions near the interface singularities can be found. 

2. INTERFACE PROBLEM 

Consider the interface problem of two dimensions (Fig. 1): 

p+(-du+u)=o, 

p-(-du+u)=O, 

in Q+, (2.la) 

in Q2, (2.lb) 

u+ =u- 
&4+ au- 
-= - 

'+ an '- an 
on TO, (2.lc) 

24 = dx, Y), on as2, (2.ld) 

FIG. 1. An interface problem. 
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where A = a2/ax2 + a2/ay2, the solution domain Q ( = 52 + u 8-) is a convex 
polygon, the interface boundary I=,, ( = s2 + n O-) is made up of the piecewise 
straight lines ABC, with an intersection angle 0, n is the normal to TO, u * = u 1 n+, 
p+ are positive constants, and the function g(x, y) is a sufficiently smooth function 
on fX2. 

The solutions near the interface singularity B have expansions: 

uCrv 0) = f Dizp,(r) dp,teL (2.2) 
i=O 

where pi < pi+, , Di are expansion coefficients, Z,(r) are the Bessel functions for a 
purely imaginary argument, defined by (Watson [22]) 

or 

C-$-Y s 1 

Z,(r) = 
m+ + $1 

e*“(l-t2)p--1/2dt, 

-’ 

(2.3a) 

(2.3b) 

and Q,,,(O) are complete orthogonal eigenfunctions of a Sturm-Liouville system, 
which fall into symmetric and anti-symmetric groups. 

Kellogg [l&12] provides two groups of eigenfunctions. 

1. Symmetric eigenfunctions: 

where the constants are 

and fij satisfy the equations 

p- tg~j~+P+ tg~j ~-t =O. 

( > 

2. Antisymmetric eigenfunctions: 

4Pj(e) = 
i 

~~s~~,(n _ e) 
rei < 812, 

J J , iei > o/2, 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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where the constants are 

and ,iij satisfy 

p+ tgfij;+p- tgjij lT-f =o. 
( > 

(2.9) 

When the intersection angles of interfaces are 

0 = 77/n, n = 2, 3, ,..., (2.10) 

some additional eigenfunctions have to be added to Kellogg’s eigenfunctions of the 
Sturm-Liouville system so that a complete set of eigenfunctions is formed. These 
additional eigenfunctions are [ 151: 

1. Symmetric eigenfinctions: 

&,k(8) = cos 2nkfl, o<eGn, (2.11) 

and 

4 nc2k+ljw= cos n(2k + l)e, 
(p-/p’) cos n(2k + l)e, 

where k=O, 1, . . . . 
2. Antisymmetric eigenfunctions: 

and 

IeI < 8/2 = 7c/2n, 
181 > O/2 = n/2n, 

(2.12) 

181 < O/2 = n/2n, 
181 > O/2 = 7c/2n, 

(2.13) 

&,czk-1,(8) = sin n(2k- l)e, o<eG1(, (2.14) 

where k = 1, 2, . . . . 

A typical interface problem as in Fig. 2 has been discussed in Strang and Fix. 
[ 193, where the solution domain is a square domain ( - 1~ x < 1, - 1 < y < 1 ), and 
Q- is a small square domain (-4~ XC i, -4~ y < 1). There then exist four 
singular points of interfaces with the intersection angles 

0 = 42, (2.15) 

i.e., n = 2 for 0 = z/n. In this case, corresponding complete eigenfunctions are: 
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. . . . 
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FIG. 2. An interface problem on the solution domain Q 

1. Symmetric eigenfunctions: Kellogg’s functions (2.4) with the constants oi,, 
(2.5), and 

fidj*l =+ifa* (2.16) 

where 

a*=zarctgJz, (2.17) 

as well as the additional functions 

#&e) = cos 4k9, 0<8Q7T, (2.18) 

and 

h(*k+ l,(e) = 
cos 2( 2k + 1) 13, w-4 <n/4, 
(p-/p+) cos 2(2k+ l)O, 14 > n/4, 

(2.19) 

where k=O, 1, . . . 
2. Antisymmetric eigenfunctions: Kellogg’s functions (2.7) with the constants 

Ej, (2.8), and 

(2.20) 

as well as the additional functions 

44/c(e) = SF-?) sin 4ke 

{ 

IQ < 7c/4, 
9 vi > ~14, 

(2.21) 
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d2c2k- l,(O) = sin 2(2k - l)@, o<tl<lr, 

where k = 1, 2, . . 

Now, denote the minimal nonzero eigenvalue pmi,, as 

Pmin=~$ flu,. 

Then, when 0 = 7112, 

P Ill,” =min[a*, 2--a*], 

where a* is defined by (2.17), and also when p+ #p-, 

5 <Pm” < 1. 

(2.22) 

(2.23 

(2.24 

Moreover, for the symmetric cases with pmin = a*, Ineq. (2.24) holds true if and 
only if 

P+<P. (2.25) 

In fact, the main part of singular expansions of u near the singularity B is 

u = WJLm,,(r)). (2.26) 

On the other hand, we have from (2.3b) 

Ipml,(r) 6 apm,ne’rum’~ (2.27) 

with a constant 

(2.28) 

Hence u = O(rPmln). Also for (2.24), the derivatives have 

I I $ =O(rpmm--l)+a as r -0. 

This shows the singularity property of solutions near the singular point B for 
interface problem (2.1). 

In practical application, we prefer the solution expansions with scale factors: 
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to (2.2), where R is a radius, which may be chosen as the inscribed radius of 52 
shown in Fig. 1. Clearly, when r = R, the solution is 

u(R 0) = f Di#p,(e), OdtldlL (2.30) 
i=O 

Then the coefficients Di can be represented from the orthogonality of eigenfunctions 
4,,m 

Di = j$ pu(R, 0) 4,i(e) de 
jl? h;,(e) de ’ 

where the function is 

p= p-3 
i 

WI <@I& 

Pf, lel > 012. 

(2.31) 

(2.32) 

3. NONCONFORMING COMBINATIONS 

We shall use the nonconforming combination of the Ritz-Galerkin and finite 
element methods for solving the interface problem (2.1). 

Divide the solution domain 52 of Fig. 3 into Q, and 8, by a circle I,. (r = R*). 
Let 52, be the disk: r < R* and 0 < 0 < 275 and Sz, the rest of Q. We notice that the 
common boundary 1,. is not the interface boundary To. 

FIG. 3. A division of the solution domain. 
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Since ueHZ(QR,) but u$H2(.Q2) for p+ #p-, we use the finite element method 
with a subspace of piecewise linear functions in Q, and the Ritz-Galerkin method 
with a subspace of particular solutions in Q, for the interface problem. In fact, the 
subdomain 52, is again divided into many small triangle elements Ai (see Fig. 3). 
Let @ = Ui A;, then fit% Q,. Also fi: extends partly into 52, so that there is a 
small overlap region of &’ and Q,, i.e., Area (fi: n 52,) # 0. The theoretical analysis 
in [13-l 51 shows that such an overlap does not cause a reduced convergence rate 
of numerical solutions. Therefore we do not need to use the complicated, 
isoparametic elements in coupling two kinds of subspaces along a curved common 
boundary I,*. 

Based on (2.29) admissible functions can be chosen as 

V(l) 

v = 

satisfying (2.ld), in @, 

VL = CL,,@, ~p,(~)l~JR)) f&,(e), in Q,, (3.1) 

where Vi’) are piecewise linear interpolation polynomials on the triangulation 
domain fi;i: of Sz,, and fii are coefficients to be calculated. Note that 17(l) in (3.1) can 
satisfy (2.ld) exactly if g(x, y) is a linear function with respect to x and y; 
otherwise, similar error analysis can be found in Strang and Fix [19]. 

In addition, the admissible functions v in (3.1) are also required to satisfy the 
continuity conditions at the element nodes Pj(R*, 19,) on the common boundary 1,. 
(I-= R*): 

,-(l)(R*, 0,) = i fii VP, on I,.. 
i=o 

(3.2) 

It is noted from (3.2) that this approach is nonconforming because the admissible 
functions chosen are not continuous on the whole common boundary I,.. 

Now, we give the definitions of the function spaces Vi and Vh. Let V, denote the 
space of v in (3.1) with the constraint conditions (3.2), and Vi denote the space of 
the functions 

$1) but satisfying E(l)1 aR = 0, 
w= 

UL, 
(3.3) 

with (3.2). 
Therefore, the combination of the Ritz-Galerkin and finite element methods is 

designed to find an approximate solution uf E V,, such that 

&(UlT 7 0) = 0, vu E v;, (3.4) 
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where the bilinear form is 

+ L2np- p-(u,o,+u,u,,+uu)dQ 

p+(u,u,+u,uY+uu)dQ 

+ i.f&,- p-(u,u,+u,u,+uu)dQ, 
1 

(3.5) 

where B + and Q - are defined in Eqs. (2.1) shown in Fig. 1. 
After elimination of the unknown fi(l’(R*, 19,) in (3.4) by the constraints (3.2), we 

obtain a linear system of algebraic equations 

Tx=b, (3.6) 

where x is the unknown vector with the components d, and ~?(‘)(r~, Oj) (ri> R*), b 
is a known vector, and the coefficient matrix T is positive definite, symmetric, and 
sparse. Consequently, the solutions x (i.e., u$) in (3.6) can be easily solved by the 
direct methods in Birkhoff and Lynch [S]. 

4. ERROR ESTIMATES AND COUPLING STRATEGY 

Define a norm over Vi: 

Il4lh = (II4 :,fq + l141:,n*)1’2, (4.1) 

where II . II m,R2 is the Sobolev norm [18]. Then we have by following the work of 
[14, 151: 

THEOREM 1. Let 

R*<R (4.2) 

and 

uEH2(QI), (4.3) 

and suppose that the family of triangular elements with the maximal boundary length 
h in &’ is quasi-uniform. Then there exists a bounded constant C independent of h, L, 
and u such that 

Il~-Gllh< C{h+ llU,.n2+~th2}, (4.4) 
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where d, is a disk (r < R2) with 

R*<R,<R, 

the remainder R, is 

with the expansion coefficients Di defined by (2.31). 

Below, we shall further estimate bounds of llRJ1 l,az. 

LEMMA 1. There exists a bounded constant C independent of p such that 

VP>>. 

(4.5) 

(4.6) 

(4.7) 

Proof: We have from (2.3b) 

alreprrp <Z,(r) < a,e’rp, 

with the constant a, defined by (2.28). It then follows that 

with C = ecR +I). This completes the proof of Lemma 1. 

LEMMA 2. Let (4.3) hold, there then exists a constant C independent of pi such 
that 

IDil G C/Pi 

for all pi > 0, where the coefficients Di are defined by (2.31). 

Proof The eigenfunctions #JO) of the Sturm-Liouville system discussed in 
Section 2 are complete and orthogonal: 

I ,2' phfe) 4,(e) de = i O3 
i# j, 

Pi2 i = j, (4.8) 

where pi are positive constants such that 

pi<c<a3. 

Define the functions 

(4.9) 

1 
- 

P= ;+’ 
tei < 4312, 

9 iei > 812, 
(4.10) 

h,(e)= -~-$bw, I 
(4.11) 
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where q5,,(0) are the eigenfunctions of the Sturm-Liouville system. Since 

a’=4 (8) pI = 44,,(e), de= (4.12) 

we have 

(4.13) 

By noting (2.31), (4.11), and (4.13), and the condition p;>O, we obtain from 
integration by parts 

Di =; jo2’ pu(R e) d,,(e) de 

=iqi 0 I P@, e) d+,(e) de 

= ~;~=~(R,~),p+~~~,(~+O) 

-P--$&,(;-O)]++.,;) 

+$L( -;+O)-P+-gm,.( -p-o)]] 

1 
s 

== au -- 
BiPi 0 

P z CR, 0) e,,(e) de. (4.14) 

Because the eigenfunctions 4,,(e) satisfy the normal flux continuity condition 
across the interfaces (see (2.lc)), the coefficients are reduced to 

Di= -1 j == au 
BiPi 0 

P z (4 e) *,,(e) de. 

Therefore, using the Sobolev imbedding theorem and assumption (4.3) gives 

(4.15) 

(4.16) 

with the bounded constants C, C’, and C”, independent of pi ( > 0). This completes 
the proof of Lemma 2. 

LEMMA 3. When the conditions in Theorem 1 hold true, then 

(4.17) 

581/80/Z-4 
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ProoJ The family of $,,(e) defined by (4.11) are also orthogonal: 

jIr ~h,ua 44+(e) de = j:' d,(e) 4,(e) de = 
{ 
O3 i # j, 
Pi5 i = j. 

(4.18) 

As a result of this orthogonality, we have 

Since the bounds of rVt(r) can be found from (2.3b): 

(4.20) 

we obtain the integration bounds by Lemma 1: 

CUr)12 + Cl + (/Ji/r)2I I:,(r) 

z;,(R) 
}rdr<Cp,(%)‘“. (4.21) 

Consequently, we have from Lemma 2 and bounded constants pi 

(4.22) 

The eigenvalues pi of the Sturm-Liouville system satisfy 

Bmin = min JpLi - pjjl > 6 > 0, 
P’r + P, 

(4.23) 

where 6 is a constant independent of i. Also the eigenvalues, corresponding 
symmetric (or antisymmetric) eigenfunctions, differ from each other. Then 

(4.24) 

where the constants a, = (R2/R)2bmln. Noting assumption (4.2) and R* CR, < R, 
then the constant a, < 1. The desired result (4.17) is obtained; this completes the 
proof of Lemma 3. 

From Theorem 1 and Lemma 3, we have 
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THEOREM 2. Let all conditions in Theorem 1 hold true, then 

(4.25) 

Assume that all eigenvalues ~1, satisfy 

p”<C*n+C, (4.26) 

where the positive constants C* and C are independent of n. Then the error bounds 
(4.25) become 

Clearly, when 
c*(r+l) 

= Ch, (4.28) 

we have 

Ilu-u;Il,<Ch. 

This important conclusion is now written in a corollary: 

(4.29) 

COROLLARY. Suppose that (4.26) and all conditions in Theorem 1 hold true. Then 
there exist error bounds (4.29) provided that Eq. (4.28) is satisfied. 

Equation (4.28) gives the coupling relation between L + 1 and h: 

L+l= 
lnC+lnh 

C* ln( R,/R) 

While h -P 0, we have a significant asymptotic relation 

L+l=O(llnh(). 

A useful formula is also derived from (4.30): 

L,s+l=(L,+l)+ Iln Wlh)I 
Wn(R21WI’ 

where the notation is 

L,+l= 
In C+lnh 

C* ln(R,/R)’ 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

with respect to a fixed h. Therefore, if a suitable total number Lh + 1 of particular 
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solutions used has been known, we may anticipate, directly from (4.32), another 
suitable total number L,,, + 1 for a new triangulation with a smaller h’ ( <h). 

Take Fig. 2 as an example where 0 = 7c/2. It follows from (2.16) to (2.20) that 

kdn, (4.34) 

i.e., C* = 1 in assumption (4.26). Then coupling relations (4.30) and (4.32) yield 

L+l= 
In C + In h 

W&/R) ’ 

and 

IW’lh)l 
L, + 1 = (L/l + 1) + ,ln(R,,R)(. 

(4.35) 

(4.36) 

In particular, let R = $ and R* = i, i.e., R* = R/2. While R2 + R*, we obtain from 
(4.36) 

Lh,*+l~(Lh+l)+l. (4.37) 

This means that only, almost, one more particular solution in a2 is required when 
all boundary lengths of triangular elements in Q, proportionally decrease to their 
halves. This clearly shows great advantages of the coupling strategy stated above. 

5. NUMERICAL EXPERIMENTS 

We consider the model problem (2.1) only on the solution domain as Fig. 2 with 
the exterior boundary condition 

u=l on &X. (5.1) 

FIG. 4. One eighth of the solution domain in Fig. 2. 
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E 0 
” =o 0 B ” A u =o 

” 

FIG. 5. A division on one eighth of the solution domain Q for the combined method. 

Because of the model’s symmetry, it suffices to solve one eighth of the solution 
domain D (see Fig. 4). So the corresponding division is given in Fig. 5 where the 
common boundary is a semicircle I,. (I = R*, 0 < 8 < n). -. 

Let M and N be the numbers of elements on the sections AO and OG m Fig. 5, 
and M = N = 2 for the case of Fig. 5. Also let 4M be the number of elements along 
the common boundary I,.. Then 

h = O( l/M). (5.2) 

The nonconforming combinations (3.4) are used for solving this interface 
problem with the admissible functions (3.1), where R = i. Because the model is 
symmetric to the axis 0 = 0, we only need the symmetric functions d,,(e): Kellogg’s 

TABLE I 

Error Norms and Condition Numbers by the Nonconforming Combination 
forp~=1,p+=0.2,R=0.5,R*=0.25,andM=N=2WhileIncreasingL+l 

L+l II&+ II m,ln* II&+ IIOJR. lI4O.* IIEllh Con. Num. 

2 0.1748 x 10-l 0.4181 x lo-* 0.2063 x 10 -* 0.2554 x 10-l 105.8 
3 0.2315 x lo-* 0.6137 x lo-* 0.8004 x 1O-3 0.1852 x IO-’ 106.3 
4 0.9951 x 10-j 0.3595 x 10-j 0.7770 x 10-3 0.1824 x lo-’ 106.4 
5 0.1287 x lo-* 0.4421 x 1om3 0.7661 x 1O-3 0.1813 x 10-l 203.3 
6 0.1302 x lo-* 0.4416 x lo-’ 0.7665 x lo-’ 0.1813 x lo-’ 203.3 
8 0.1228 x lo-* 0.4454 x 10 m3 0.7647 x 1o-3 0.1812 x 10-l 2512 

10 0.1212 x lo-2 0.4450x lo-3 0.7646 x 10 -3 0.1812 x 10-l 30485 
12 0.1220 x 10-z 0.4442 x 10-3 0.7644 x lo-’ 0.1812 x lo-’ 0.7836 x lo6 
14 0.1470 x lo-* 0.4394 x 1o-3 0.7628 x 10m3 0.1813 x 10-l 0.9098 x 10’ 
16 0.1629 x 10-l 0.3299 x 10m2 0.1042 x lo-* 0.2784 x 10-l 0.1807 x lo9 
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functions (2.4) with (2.16) and the additional functions (2.18) and (2.19). In terms 
of true coefficients Di (i= 0, 1, . . . . 25) given by the boundary methods [15, 161, we 
can compute true errors of numerical solutions obtained. 

Besides, in order to discuss the stability of the nonconforming combinations, we 
evaluate condition numbers of the coefficient matrix T in (3.6): 

Con. Num. = 3, 
m,n 

(5.3) 

where A,,,(T) and ~min( T) are the maximal and minimal eigenvalues of T, respec- 
tively. A theoretical analysis on the condition numbers has been done in Li 
[14, 151; but this paper will first provide their numerical experiments. 

We shall analyze true errors of numerical solutions and condition numbers in the 
following four aspects. In the first three aspects, we let p- = 1 and p+ = 0.2 as in 
Strang and Fix Cl93 where the constant is CI * = 0.7836531 from (2.17). In the fourth 
aspect, we shall change the values of p + while p - = 1. 

1. For the division in Fig. 5 where R* = a and M = N= 2, we have calculated 
error norms and condition numbers shown in Table I, while (L + 1) increases. All 
numerical results given in this section are, with double precision, calculated by a 
computer of the University of Toronto. For data in tables of the error norms 
II4 o,o> II&+ llO,IR.’ et al., the solution domain Q is regarded as in Fig. 5 (i.e., one 
eighth of that in Fig. 2), and I,, is a semi-circle (r = R*, 0 si 8 < n). 

It is seen from Table I that the differences of the error norms llell,, are very slight 
when 4 < L + 1~ 12, and that the condition numbers are small when L + 1 < 6. We 
notice that when L + 1 increases, the condition numbers increase very quickly. 
Therefore, the total number of particular solutions must be chosen small, more 

TABLE III 

Error Norms and Condition Numbers by the Nonconforming Combinations 
for p- = 1, p+ = 0.2, R = 0.5, and R* = 0.25 

Division II& + II m.h. II&+ Ilo,,,. lIhl IMh Con. Num. 

N=M=2 
L.+1=4 0.9951 x lo-’ 0.3595 x 1o-3 0.7770 x 10-3 0.1824 x 10-l 106.4 

N=M=3 
L+l=s 0.5814 x lo-’ 0.1985 x lo-’ 0.3363 x 1O-3 0.1202 x 10-l 243.9 

N=M=4 
L+1=5 0.3358 x 1O-3 0.1132 x 1O-3 0.1914 x 1o-3 0.9007 x 10-l 455.3 

N=M=6 
0.1588 x 1O-3 0.5030 x 1om4 0.9203 x 10 -4 L+1=6 0.6020 x 1o-2 1152 

N=M=8 
L+1=6 0.8883 x 1O-4 0.2841 x 1O-4 0.5047 x 1o-4 0.4537 x 1o-2 2518 
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importantly from the stability’s point of view. A comparison of approximate 
coefficients with true coefficients in [ 151 has also been made in Table II. 

2. Let the division of 52, in Fig. 5 be finer by increasing the numbers M and 
N, i.e., by decreasing h. On the basis of the coupling relation (4.37), we may 
increase one more particular solution in Q2,, while the numbers M and N of divi- 
sions increase to their doubles. For example, considering that L + 1 = 4 is a good 
choice for M = N = 2 because of a minimal calculation work and a small condition 
number (see Table I), we can simply choose L + 1 = 5 for M = N = 4, and L + 1 = 6 
for M = N= 8. The error norms and condition numbers have been calculated and 
shown in Table III, while the number M increases with N= M. The curves of error 
norms and condition numbers versus M ( = N) have been depicted in Figs. 68. 

l/4, 

0.05 

0.025 

0.01 

0.005 

0.0025 

FIG. 6. 

I I I I I 
M 

2 3 4 6 8 

The curves of the error norms, ljellh and /(E(I~,~, vs M with N= M. 
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FIG. 7. The curves of the error norms, ]IE+/~~,,~. and )\E+IJ ru,,R.r vs M with N= M. 

Since h = O( l/M), we can see from Figs. 6-8 that the error norms and condition 
numbers satisfy asymptotic formulae: 

ll4lh = W), (5.4) 

l1~llo.n = W2)Y (5.5) 

II&+ IIcl,IR. = W2h (5.6) 

II& + II co,lR. = O(P6), (5.7) 
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and 

2 3 4 6 8 

FIG. 8. The curve of the condition numbers vs M with N = M. 

Con. Num = 0( h ~ 2.3), (5.8) 

where E=U-uf, E+ =sln2, and 6 is an arbitrarily small positive number. 
Clearly, the asymptotic formulas (5.4~(5.7) are the same as those in the finite 

element method [2, 3, 5, 6, 17, 191. Moreover, the asymptotic expression (5.4) 
coincides with the corollary in Section 4 concerning the coupling strategy. 
Equations (5.6) and (5.7) also imply that the errors of numerical solutions are small 
even on I,. where the admissible functions are not always continuous. 

Equation (5.8) shows that when h + 0, the condition numbers of T increase a 
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TABLE IV 

Calculated Coefficients by the Nonconforming Combination for 
pm=l,p+ =0.2, R=OS, and R*=0.25 

2 4 
3 5 
4 5 
6 6 
8 6 

True coeffkients 
Cl51 

0.7010658 -0.1141826 -0.0127701 0.0064463 
0.7008395 -0.1144877 -0.0128381 0.0060110 - 0.0074590 
0.7007581 -0.1146103 -0.0128630 0.0058936 -0.0055113 
0.7007021 -0.1147023 -0.0128808 0.0058239 -0.c041104 
0.7006829 -0.1147354 -0.0128868 0.0058025 -0.0036160 

0.7006584 -0.1147786 -0.0128943 0.0057785 -0.0029746 

little faster than O(k2) in the standard finite element method [19]. Therefore, the 
stability of the nonconforming combinations are almost as good as that of the finite 
element method if the coupling strategy in this paper is employed. 

In addition, we have computed the errors of calculated coefficients in Table IV. 
Denote 

cm,= IS,-D,I, l=O, 1, 2, 3, (5.9) 

and depict their error curves in Fig. 9. It appears to exist asymptotic relations 

m, = 0(/l*), cm, = O(h2). (5.10) 

It is noteworthy that only the six basis functions in 51, are required for coupling 
the finest division in @, i.e., M= 8. The first two basis functions of u in 52, are 
given by 

uz B Z,(r) +b Z,*(r) 
O Z,(R) I* 

1 m b(e) + -., r<R=i: (5.11) 

where c(* = 0.7836531. The values of b, and d, are obtained, 

8, = 0.7006829, d, = -0.1147354, 

with small relative errors 0.000035 and 0.0004, respectively. The second coefficient 
8, is more important because the corresponding basis function 

is a principal part of the singular solutions, with u z O((r/R)‘.‘*) as r + 0. 

3. Calculations have been done for increasing the radius R* of the singular 
domain a2, shown in Table V. When R* --) R ( = $), the values of llsllh decrease a 
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2.5.10-4 
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FIG. 9. 
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The curves of relative errors of calculated coefficients vs M with N = M. 
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TABLE V 

Error Norms and Condition Numbers for p- = 1, p+ = 0.2, R = 0.5, 
and N =4 While Increasing R* 

Divisions IIs+ II rn,lR. II&+ IIWR. Il43,n ll4* 
Con. Unknown 
Num. Num. 

R* =0.25 
M=4,Lfl=5 0.3358 x 1O-3 0.1132 x 1O-3 0.1914 x 1O-3 0.9007 x lo-’ 455.3 64 

R* = 0.3125 
M=3,L+1=6 0.3873 x IO-’ 0.1113 x 1O-3 0.1874x 1O-3 0.9081 x lo-’ 394.8 48 

R* =0.375 
M=2,L+1=6 0.5751 x 1O-3 0.1598 x lo-’ 0.2217 x lo-’ 0.9603 x lo-* 508.6 31 

R*=0.4375 
M=2,L+1=6 0.5103 x lo-’ 0.1402x 1O-3 0.1443 x 1O-3 0.7323 x 1O-2 1276 31 

R* =0.475 
M=2,L+1=7 0.4351 x 1O-3 0.1483 x lo-’ 0.1273 x 10m3 0.6195 x IO-* 3659 32 

TABLE VI 

Error Norms and Condition Numbers When R = 0.5, R* = 0.25, L + 1 = 5, 
M=N=4andp-=lforDifferentp+ 

PC II& + II m,h. II”+Ilo,!R. ll4o.n II&II* Con. Num. 

100 0.3071 x lo-) 0.1298 x lo-* 0.2772 x lo-* 0.1279 13184 
10 0.2973 x 1O-3 0.4103 x lo-) 0.8800 x 1o-3 0.4073 x 10 -i 1275 
1 0.2782 x 1O-3 0.1432x 1O-3 0.2972 x 1O-3 0.1409 x 10-t 315 

0.2 0.3558 x lo-’ 0.1132x 1O-3 0.1914x lo-) 0.9007 x 10-r 455 
0.04 0.4079 x 1o-3 0.8904 x 10 -4 0.1181 x 1O-3 0.6525 x 1O-2 2491 

0.008 0.6484 x 1O-3 0.3905 x 1o-4 0.5277 x 1O-4 0.3631 x 1O-2 31628 

TABLE VII 

Calculated Coefficients When R = 0.5, R* = 0.25, L + 1 = 5, 
M=N=4, andp-=1 for Differentp’ 

PC ci* 60 6, b2 d3 64 

100 1.3260788 0.9597324 -0.0917904 - 0.0722960 0.0495255 -0.0077871 
10 1.2683082 0.9546098 -0.0973639 -0.0601767 0.0404860 -0.0076972 
1 1.0 0.9011589 -0.1182058 -0.0277571 0.0160052 -0.0070652 

0.2 0.7836531 0.7007582 -0.1146103 -0.0128630 0.0058936 -0.0051131 
0.04 0.6945953 0.3224818 -0.0586203 - 0.0047703 0.0019269 -0.0026008 

0.008 0.6724856 0.0867451 -0.0162162 -0.0012146 0.0004748 - O.ooO7068 
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TABLE VIII 

Relative Errors K, = (0,/b, - 1) with R = 0.5, R* = 0.25, L + 1 = 5, M = N = 4, 
pm = 1, and Different p+. Where the Coefficients D, as [lS] 

100 0.0000560 0.000769 -0.000651 0.01788 0.8077 
10 o.c00052 1 O.OtlO185 -0.000818 0.01980 0.8162 
1 0.0000444 -0.001237 -0.001719 0.02708 0.8565 

0.2 0.0001424 -0.001466 - 0.002429 0.01991 0.8528 
0.04 0.0004026 -0.001196 - 0.002492 0.004806 0.8181 
0.008 0.0005725 -0.001011 - 0.002399 - 0.000998 0.8046 

little; but the values of Con. Num. increase substantially. Then, we may choose a 
properly larger radius R* (e.g., R* = 0.375) than R* =0.25 for saving calculation 
work. 

4. We have also investigated the influence of different p+ upon error norms, 
coefficient errors and condition numbers, and shown in Tables VI-VIII. 

It can be found from Table VI that the condition number is smallest at 
p+ = pP = 1, the case without singularity, and that the condition number is large 
when p+ is either large or small. 

Another interesting fact is shown in Table VI that the error norms l/sllh et al. for 
P+>P ~ are larger than those for p + < p -. Also the larger p + is, the larger the 
error norms 11~11~ et al. are. We notice that when p+ > pP, the value c1* > 1 holds 
true for the symmetric eigenfunctions. So UEH’(Q), and the finite element method 
using the space of piecewise linear functions is still available for the whole solution 
domain Sz because a good approximate solution with the error norms llell l,R = O(h) 
can also be obtained. 

However, when p+ < p-, the value c1* < 1 results from (2.17). Hence the linear 
element method,has a reduced convergence rate in solving the model problem (2.1). 
It is just in the case p+ < p- that the error norms of solutions by combinations are 
even smaller (see Table VI). Consequently, we recommend that the nonconforming 
combination of Ritz-Galerkin and finite element methods with the coupling 
strategy (4.32) be used for the model interface problem (2.1) in Fig. 2 when 
p+<p-, and for other interface problems when the conventional finite element 
method or finite difference method has a reduced convergence rate. 
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